3.57 \(\int \frac {\sinh (\sqrt {x})}{\sqrt {x}} \, dx\)

Optimal. Leaf size=8 \[ 2 \cosh \left (\sqrt {x}\right ) \]

[Out]

2*cosh(x^(1/2))

________________________________________________________________________________________

Rubi [A]  time = 0.01, antiderivative size = 8, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {5320, 2638} \[ 2 \cosh \left (\sqrt {x}\right ) \]

Antiderivative was successfully verified.

[In]

Int[Sinh[Sqrt[x]]/Sqrt[x],x]

[Out]

2*Cosh[Sqrt[x]]

Rule 2638

Int[sin[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[Cos[c + d*x]/d, x] /; FreeQ[{c, d}, x]

Rule 5320

Int[(x_)^(m_.)*((a_.) + (b_.)*Sinh[(c_.) + (d_.)*(x_)^(n_)])^(p_.), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simpli
fy[(m + 1)/n] - 1)*(a + b*Sinh[c + d*x])^p, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p}, x] && IntegerQ[Sim
plify[(m + 1)/n]] && (EqQ[p, 1] || EqQ[m, n - 1] || (IntegerQ[p] && GtQ[Simplify[(m + 1)/n], 0]))

Rubi steps

\begin {align*} \int \frac {\sinh \left (\sqrt {x}\right )}{\sqrt {x}} \, dx &=2 \operatorname {Subst}\left (\int \sinh (x) \, dx,x,\sqrt {x}\right )\\ &=2 \cosh \left (\sqrt {x}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.00, size = 8, normalized size = 1.00 \[ 2 \cosh \left (\sqrt {x}\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[Sinh[Sqrt[x]]/Sqrt[x],x]

[Out]

2*Cosh[Sqrt[x]]

________________________________________________________________________________________

fricas [A]  time = 0.56, size = 6, normalized size = 0.75 \[ 2 \, \cosh \left (\sqrt {x}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sinh(x^(1/2))/x^(1/2),x, algorithm="fricas")

[Out]

2*cosh(sqrt(x))

________________________________________________________________________________________

giac [A]  time = 0.17, size = 11, normalized size = 1.38 \[ e^{\left (-\sqrt {x}\right )} + e^{\sqrt {x}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sinh(x^(1/2))/x^(1/2),x, algorithm="giac")

[Out]

e^(-sqrt(x)) + e^sqrt(x)

________________________________________________________________________________________

maple [A]  time = 0.01, size = 7, normalized size = 0.88 \[ 2 \cosh \left (\sqrt {x}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sinh(x^(1/2))/x^(1/2),x)

[Out]

2*cosh(x^(1/2))

________________________________________________________________________________________

maxima [A]  time = 0.44, size = 6, normalized size = 0.75 \[ 2 \, \cosh \left (\sqrt {x}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sinh(x^(1/2))/x^(1/2),x, algorithm="maxima")

[Out]

2*cosh(sqrt(x))

________________________________________________________________________________________

mupad [B]  time = 0.40, size = 6, normalized size = 0.75 \[ 2\,\mathrm {cosh}\left (\sqrt {x}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sinh(x^(1/2))/x^(1/2),x)

[Out]

2*cosh(x^(1/2))

________________________________________________________________________________________

sympy [A]  time = 0.26, size = 7, normalized size = 0.88 \[ 2 \cosh {\left (\sqrt {x} \right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sinh(x**(1/2))/x**(1/2),x)

[Out]

2*cosh(sqrt(x))

________________________________________________________________________________________